Trichloroacetic Acid ("TCA")

Molecular Weight = 163.39 CAS Registry No. 76-03-9

TCA use/occurence

- Synthetic intermediate
- Minor uses: medication, reagent
- Former use: selective herbicide (principally as the Na⁺ salt). The most recent registration was cancelled in 1992
- TCA is one of the major by-products of the disinfection of water by chlorination

TCA occurrence (ii)

- Concentrations measured in U.S. drinking water supplies in one study ranged from 4 to 103 μ g/L
- Formed (with other chloroacetic acids, halomethanes *etc.*) by reaction of Cl₂ or hypochlorite with organic substances, *e.g.* humic acid.
- TCA is also found in other situations where water is chlorinated, such as irrigation, swimming pools, and pulp mill effluents.

Carcinogenicity of TCA

- Carcinogenicity in humans:
 - No data
- Carcinogenicity in animals:
 - A number of bioassays have been reported
 - TCA is a hepatocarcinogen in the mouse. The male is more sensitive than the female.
 - In a single rat study, TCA was hepatotoxic but not hepatocarcinogenic.

Carcinogenicity Studies of TCA

Route	Species	Strain	Sex	Tumor site, type	IARC eval.?	Authors
oral (drinking water)	Mouse	B6C3F ₁	M	hepatocellular adenoma (ad.) and carcinoma (ca.)	yes	Herren-Freund <i>et al.</i> , 1987
oral (drinking water)	Mouse	B6C3F ₁	M, F	hepatocellular ca. in males only	yes	Bull et al., 1990
oral (drinking water) #1	Mouse	B6C3F ₁	M	hepatocellular ad. and ca.	no	DeAngelo and Daniel,
oral (drinking water) #2	Mouse	B6C3F ₁	M	hepatocellular ad. and ca.	no	1990; DeAngelo, 1991
oral (drinking water)	Mouse	B6C3F ₁	F	hepatocellular ad. and ca.	no	
oral (drinking water)	Mouse	B6C3F ₁	F	hepatocellular ad. and ca.	no	Pereira, 1996
oral (drinking water)	Mouse	B6C3F ₁	F	hepatocellular ca.	no	Pereira and Phelps, 1996.
oral (drinking water)	Rat	F344	M	No increases in tumor incidence	no	DeAngelo and Daniel, 1992; DeAngelo, 1991; De Angelo <i>et al.</i> , 1997.

Hepatocellular Tumors in male B6C3F₁ mice receiving ENU and/or TCA

Herren-Freund et al. (1987)

Treatme	ent	Result						
ENU, mg/kg	TCA, mg/L	N Mice with Adenomas		Adenomas / mouse	Mice with Carcinomas	Carcinomas/ mouse		
10	5	28	11 (39%)	0.61±0.16	15 (54%)	0.93±0.22		
2.5	5	23	6 (26%)	0.30 ± 0.12	11 (48%)	0.57 ± 0.21		
2.5	2	33	11 (33%)	0.42 ± 0.12	16 (48%)	0.64±0.14		
0	5	22	8 (36%)	0.50 ± 0.16	7 (32%)	0.50±0.17		
10	0	23	9 (39%)	0.52±0.15	9 (39%)	0.57±0.20		
2.5	0	22	1 (5%)	0.05±0.05	1 (5%)	0.05±0.05		
0	0	22	2 (9%)	0.09±0.06	0 (0%)	0		

Significantly different from control (P < 0.01 by Fisher's exact test):

Carcinogenic effect Tumor promoting effect

Hepatocellular lesions in male B6C3F₁ mice receiving TCA in drinking water

Bull et al. (1990)

Treatm	ient		Result: Number of lesions (number of mice)					
TCA,	Duration	N	Total	Lesions	Diagnosis of lesions:			
g/L	(weeks)		lesions	examined	Normal	Hyper-	Adenoma	Carcin-
						plastic		oma
2	52	24	30 (19 ^b)	16 (11)	1 (1)	10 (9)	1 (1)	4 (4)
2	37	11	5 (4 ^a)	5 (4)	0	2 (2)	0	3 (3)
1	52	11	7 (5 ^b)	7 (5)	0	3 (1)	2 (2)	2 (2)
0	-	35	2 (2)	2 (2)	1 (1)	1 (1)	0	0

Significantly increased (a P < 0.05, b P<0.01) relative to control, by Fisher's Exact Test.

Hepatocellular tumors in B6C3F₁ mice receiving TCA in drinking water

DeAngelo and Daniel (1990); DeAngelo (1991)

- Experiment 1: Male mice; 0, 0.05, 0.5 or 5 g TCA/L drinking water (0, 8, 71 and 595 mg/kg bw/day) for 60 weeks.
 - Hepatocellular adenomas + carcinomas increased in mice receiving 0.5 (37.9%) and 5 g TCA/L (55.2%), compared to controls (13.3%)
 - Not significantly increased in mice receiving 0.05 g/L TCA.
- Experiment 2: Male mice; 0 or 4.5 g TCA/L drinking water (0 and 583 mg/kg bw/day) for 94 weeks.
 - Hepatocellular tumors increased in exposed (86.7%) vs. controls (15%).
- Experiment 3: Female mice; 0, 0.5 or 4.5 g TCA/L drinking water (0, 71 and 583 mg/kg bw/day) for 104 weeks.
 - Hepatocellular tumors (ad. and ca.) increased in mice receiving 4.5 g
 TCA/L (60%) compared to controls (7.7%).
 - Not significantly increased in mice receiving 0.5 g TCA/L.

Hepatocellular lesions in female B6C3F₁ mice receiving TCA in drinking water Pereira (1996)

Treatn	nent	Incidence of lesions: Number of animals (percentage of animals)				
TCA, mM	Duration (days)	N	Foci of altered hepatocytes	Hepato- cellular Adenoma	Hepato- cellular Carcinoma	
20	360	20	0	2 (10)	5 (26.3)	
	576	18	11 (61.1)	7 (38.9)	5 (27.8)	
6.67	360	19	0	3 (15.8)	0	
	576	27	9 (33.3)	3 (11.1)	5 (18.5)	
2.0	360	40	3 (7.5)	3 (7.5)	0	
	576	53	10 (18.9)	4 (7.6)	0	
0	360	40	0	1 (2.5)	0	
	576	90	10 (11.1)	2 (2.2)	2 (2.2)	

Hepatocellular lesions in female B6C3F₁ mice receiving TCA in drinking water Pereira and Phelps (1996)

Treat-	Mean number of lesions per mouse ± standard error (percentage incidence)								
ment	<i>31</i> и	veeks		52 weeks					
TCA mM	N ^b	Foci / mouse	Adenomas / mouse	N	Foci / mouse	Adenomas / mouse	Carcinomas / mouse		
20	10	0 (0)	0 (0)	19 +1	0 (0)	0.15±0.11 (10)	0.5±0.18 e (25)		
6.67	10	0 (0)	0 (0)	19	0 (0)	0.21±0.12 (15.8)	0 (0)		
2.0	15	0 (0)	0 (0)	40	0.08±0.04 (7.5)	0.08±0.04 (7.5)	0 (0)		
0	15	0.13±0.13 (6.7)	0.13±0.13	40	0 (0)	0.03±0.03 (2.5)	0 (0)		

Significantly different from control group by Mann-Whitney test: P < 0.05.

Male Fischer 344 rats receiving TCA in drinking water

DeAngelo and Daniel (1992); DeAngelo (1991); DeAngelo *et al.* (1997)

- Male rats; 0.0, 0.05, 0.5 or 5 g TCA/L drinking water (0, 3.6, 36 and 378 mg/kg bw/day) for 104 weeks.
 - No significant increase in hepatocellular tumors in exposed rats.

Tumor initiation/promotion studies

All Studies:

TCA Route = Oral (drinking water)

Initiator	Species	Strain	Sex	End point	Result	Authors
ENU	Mouse	B6C3F ₁	M	hepatocellular tumors	Carcinogenicity +ve, promotion -ve	Herren- Freund <i>et</i> <i>al.</i> , 1987
MNU	Mouse	B6C3F ₁	F	Liver tumors & foci (eosinophilic, basophilic)	Carcinogenicity +ve, promotion +ve	Pereira and Phelps, 1996
MNU	Mouse	B6C3F ₁	F	Liver tumors & foci (eosinophilic, basophilic)	Promotion +ve	Pereira et al., 1997
DEN, Partial Hepatectomy	Rat	Sprague- Dawley	M	γGT positive liver foci	Promotion +ve	Parnell <i>et al.</i> , 1988

Carcinogenicity Studies of TCA: Results

• Mice:

- Multiple independent studies in a single strain (B6C3F₁).
- Liver adenoma and carcinoma.
- All studies positive.
- Both sexes.

• Rats:

- Single study.

 No carcinogenic effect observed.

Genotoxicity of TCA:

standard assays

- Bacterial Mutagenicity:
 - mostly negative.
- Mammalian cells in vitro:
 - very weak: pH effect?
- Mammals in vivo: chromosomal effects
 - micronuclei (inconsistent, high dose only?),
 aberrations, sperm abnormalities.

Genotoxicity of TCA:

oncogene & DNA effects

- DNA strand breaks.
 - Some positives: mice more sensitive than rats.
- Oxidative DNA damage.
 - Weak positive or negative results: inconsistent.
- Effects on proto-oncogenes & oncoproteins.
 - Consistent changes in tumors: different from DCA.
- DNA Synthesis.
 - Increases in mice associated with cell proliferation (not repair).

Structure-Activity Comparisons

- Other chlorinated acetic acids:
 - Dichloroacetic acid causes liver cancer in mice
 - Monochloroacetic acid not carcinogenic to mice or rats,
 but severe toxicity might mask response
- Other chlorinated aliphatic compounds:
 - TCE and PCE (of which TCA is a metabolite) are identified as carcinogens for the purposes of Proposition 65.

Mechanism: Alternatives proposed (i)

Genotoxic / DNA reactive?

- For:
 - Some clastogenic effects
 - DNA strand breakage and oxidative damage.
- Against:
 - Most genotoxicity results negative: the few "positives" are equivocal or inconsistent.
 - TCA not intrinsically reactive.
 - No evidence of metabolism to a reactive intermediate.
- Conclusion:
 - Probably not.

Mechanism: Alternatives proposed (ii)

"Non-genotoxic" (i.e. not DNA reactive):

- Peroxisome proliferation (PP)?
 - For:
 - Observed in rodents exposed to TCA and DCA.
 - More marked in mice than rats.
 - Against:
 - Not a large effect, even in mice.
 - Compare DCA and TCA: PP similar, but tumorigenic effects, oncogene activation different.
 - Reports of DNA oxidative damage not substantiated.
 - Conclusion:
 - PP occurs, but its role in TCA carcinogenesis (if any) is unclear.

Mechanism: Alternatives proposed (iii)

- Enhanced cell proliferation due to cytotoxicity
 - For:
 - Proliferation observed in mice
 - Against:
 - Probably not sufficient alone to explain tumor formation.
 - Cause or effect?
- Other growth regulatory effects
 - For/Against:
 - Maybe: insufficient detail to evaluate.
- Overall Conclusion: Insufficient information to determine and characterize mechanism.

Trichloroacetic acid: Summary.

- Animal evidence for carcinogenicity:
 - Positive in both sexes of one strain of the mouse, in multiple experiments.
 - Tumor promoter in rat and mouse liver.
 - negative in rat (1 study).
- Weak (much negative or equivocal) evidence of genetic toxicity.
- Mechanistic arguments against human relevance, but no clear proof of mechanism(s).

